A novel hybrid deep learning approachfor tourism demand forecasting

نویسندگان

چکیده

This paper proposes a new hybrid deep learning framework that combines search query data, autoencoders (AE) and stacked long-short term memory (staked LSTM) to enhance the accuracy of tourism demand prediction. We use data from Google Trends as an additional variable with monthly tourist arrivals Marrakech, Morocco. The AE is applied feature extraction procedure dimension reduction, extract valuable information mine nonlinear incorporated in data. extracted features are fed into LSTM predict arrivals. Experiments carried out analyze performance forecast results proposed method compared individual models, different principal component analysis (PCA) based models. experimental show outperforms other

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forecasting Tourism Demand with Composite Search Index

Researchers have adopted online data such as search query volumes to forecast tourism demand for a destination, including tourist volumes and hotel occupancy. However, the massive yet highly correlated query data pose challenges when researchers attempt to include them in the forecasting model. We propose a framework and procedure for creating a composite search index adopted in a generalized d...

متن کامل

Bayesian Models for Tourism Demand Forecasting

This study extends the existing forecasting accuracy debate in the tourism literature by examining the forecasting performance of various vector autoregressive (VAR) models. In particular, this study seeks to ascertain whether the introduction of the Bayesian restrictions (priors) to the unrestricted VAR process would lead to an improvement in forecasting performance in terms of achieving a hig...

متن کامل

Tourism Demand Forecasting by Improved SVR Model

The inboard tourism demand forecasting is very important to the development of tourism industry. In this paper, the SVR model is adopted to forecast monthly inbound tourism demand of China. And the elitist Non-dominated Sorting Genetic Algorithm (NSGAII) is used to parameter optimization. The NSGAII algorithm can reduce complexity of the algorithm, keeps the diversity of population and increasi...

متن کامل

Tourism Demand Forecasting Model Using Neural Network

Travel agencies should be able to judge the market demand for tourism to develop sales plans accordingly. However, many travel agencies lack the ability to judge the market demand for tourism, and thus make risky business decisions. Based on the above, this study applied the Artificial Neural Network combined with the Genetic Algorithm (GA) to establish a prediction model of air ticket sales re...

متن کامل

Developing a hybrid intelligent model for forecasting problems: Case study of tourism demand time series

Forecasting tourism demand is a crucial issue in the tourism industry and is generally seen to be one of the most complex functions of tourism management. With the accurate forecasted trends and patterns that indicate the sizes, directions and characteristics of future international tourist flows, the government and private sectors can have a well-organized tourism strategy and provide a better...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Electrical and Computer Engineering

سال: 2023

ISSN: ['2088-8708']

DOI: https://doi.org/10.11591/ijece.v13i2.pp1989-1996